3.26 \(\int \frac {1-x^4}{1-2 x^4+x^8} \, dx\)

Optimal. Leaf size=13 \[ \frac {1}{2} \tan ^{-1}(x)+\frac {1}{2} \tanh ^{-1}(x) \]

[Out]

1/2*arctan(x)+1/2*arctanh(x)

________________________________________________________________________________________

Rubi [A]  time = 0.00, antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {28, 21, 212, 206, 203} \[ \frac {1}{2} \tan ^{-1}(x)+\frac {1}{2} \tanh ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[(1 - x^4)/(1 - 2*x^4 + x^8),x]

[Out]

ArcTan[x]/2 + ArcTanh[x]/2

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rubi steps

\begin {align*} \int \frac {1-x^4}{1-2 x^4+x^8} \, dx &=\int \frac {1-x^4}{\left (-1+x^4\right )^2} \, dx\\ &=-\int \frac {1}{-1+x^4} \, dx\\ &=\frac {1}{2} \int \frac {1}{1-x^2} \, dx+\frac {1}{2} \int \frac {1}{1+x^2} \, dx\\ &=\frac {1}{2} \tan ^{-1}(x)+\frac {1}{2} \tanh ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 25, normalized size = 1.92 \[ -\frac {1}{4} \log (1-x)+\frac {1}{4} \log (x+1)+\frac {1}{2} \tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 - x^4)/(1 - 2*x^4 + x^8),x]

[Out]

ArcTan[x]/2 - Log[1 - x]/4 + Log[1 + x]/4

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 17, normalized size = 1.31 \[ \frac {1}{2} \, \arctan \relax (x) + \frac {1}{4} \, \log \left (x + 1\right ) - \frac {1}{4} \, \log \left (x - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+1)/(x^8-2*x^4+1),x, algorithm="fricas")

[Out]

1/2*arctan(x) + 1/4*log(x + 1) - 1/4*log(x - 1)

________________________________________________________________________________________

giac [B]  time = 0.45, size = 19, normalized size = 1.46 \[ \frac {1}{2} \, \arctan \relax (x) + \frac {1}{4} \, \log \left ({\left | x + 1 \right |}\right ) - \frac {1}{4} \, \log \left ({\left | x - 1 \right |}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+1)/(x^8-2*x^4+1),x, algorithm="giac")

[Out]

1/2*arctan(x) + 1/4*log(abs(x + 1)) - 1/4*log(abs(x - 1))

________________________________________________________________________________________

maple [A]  time = 0.00, size = 10, normalized size = 0.77 \[ \frac {\arctanh \relax (x )}{2}+\frac {\arctan \relax (x )}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^4+1)/(x^8-2*x^4+1),x)

[Out]

1/2*arctan(x)+1/2*arctanh(x)

________________________________________________________________________________________

maxima [A]  time = 1.60, size = 17, normalized size = 1.31 \[ \frac {1}{2} \, \arctan \relax (x) + \frac {1}{4} \, \log \left (x + 1\right ) - \frac {1}{4} \, \log \left (x - 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^4+1)/(x^8-2*x^4+1),x, algorithm="maxima")

[Out]

1/2*arctan(x) + 1/4*log(x + 1) - 1/4*log(x - 1)

________________________________________________________________________________________

mupad [B]  time = 0.02, size = 9, normalized size = 0.69 \[ \frac {\mathrm {atan}\relax (x)}{2}+\frac {\mathrm {atanh}\relax (x)}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^4 - 1)/(x^8 - 2*x^4 + 1),x)

[Out]

atan(x)/2 + atanh(x)/2

________________________________________________________________________________________

sympy [B]  time = 0.13, size = 17, normalized size = 1.31 \[ - \frac {\log {\left (x - 1 \right )}}{4} + \frac {\log {\left (x + 1 \right )}}{4} + \frac {\operatorname {atan}{\relax (x )}}{2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**4+1)/(x**8-2*x**4+1),x)

[Out]

-log(x - 1)/4 + log(x + 1)/4 + atan(x)/2

________________________________________________________________________________________